Classification of 3-(24, 12, 5) designs and 24-dimensional Hadamard matrices
نویسندگان
چکیده
منابع مشابه
Amicable Hadamard matrices and amicable orthogonal designs
New constructions for amicable orthogonal designs are given. These new designs then give new amicable Hadamard matrices and new skew-Hadamard matrices. In particular we show that if p is the order of normalized amicable Hadamard matrices there are normalized amicable Hadamard matrices of order (p 1)u + 1, u > 0 an odd integer. Tables are given for the existence of amicable and skew-Hadamard mat...
متن کاملConstructing Hadamard matrices from orthogonal designs
The Hadamard conjecture is that Hadamard matrices exist for all orders 1,2, 4t where t 2 1 is an integer. We have obtained the following results which strongly support the conjecture: (i) Given any natural number q, there exists an Hadamard matrix of order 2 q for every s 2 [2log2 (q 3)]. (ii) Given any natural number q, there exists a regular symmetric Hadamard matrix with constant diagonal of...
متن کاملNew Symmetric Designs from Regular Hadamard Matrices
For every positive integer m, we construct a symmetric (v, k, λ)-design with parameters v = h((2h−1) 2m−1) h−1 , k = h(2h − 1)2m−1, and λ = h(h − 1)(2h − 1)2m−2, where h = ±3 · 2 and |2h − 1| is a prime power. For m ≥ 2 and d ≥ 1, these parameter values were previously undecided. The tools used in the construction are balanced generalized weighing matrices and regular Hadamard matrices of order...
متن کاملSome orthogonal designs and complex Hadamard matrices by using two Hadamard matrices
We prove that if there Hadamard of order hand n divisible by 4 then there exist two disjoint ihn), whose sum is a (1,-1) matrix and a complex Hadamard matrix of order furthermore, there exists an 0 D(mj 81,82, ' .. ,8/) for even m then there exists an OD(lhnm;
متن کامل5 Concluding Remarks 24
2 Requirements for Ground Simulation 5 2.1 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Blunt Body Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Instrumentation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1981
ISSN: 0097-3165
DOI: 10.1016/0097-3165(81)90054-6