Classification of 3-(24, 12, 5) designs and 24-dimensional Hadamard matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amicable Hadamard matrices and amicable orthogonal designs

New constructions for amicable orthogonal designs are given. These new designs then give new amicable Hadamard matrices and new skew-Hadamard matrices. In particular we show that if p is the order of normalized amicable Hadamard matrices there are normalized amicable Hadamard matrices of order (p 1)u + 1, u > 0 an odd integer. Tables are given for the existence of amicable and skew-Hadamard mat...

متن کامل

Constructing Hadamard matrices from orthogonal designs

The Hadamard conjecture is that Hadamard matrices exist for all orders 1,2, 4t where t 2 1 is an integer. We have obtained the following results which strongly support the conjecture: (i) Given any natural number q, there exists an Hadamard matrix of order 2 q for every s 2 [2log2 (q 3)]. (ii) Given any natural number q, there exists a regular symmetric Hadamard matrix with constant diagonal of...

متن کامل

New Symmetric Designs from Regular Hadamard Matrices

For every positive integer m, we construct a symmetric (v, k, λ)-design with parameters v = h((2h−1) 2m−1) h−1 , k = h(2h − 1)2m−1, and λ = h(h − 1)(2h − 1)2m−2, where h = ±3 · 2 and |2h − 1| is a prime power. For m ≥ 2 and d ≥ 1, these parameter values were previously undecided. The tools used in the construction are balanced generalized weighing matrices and regular Hadamard matrices of order...

متن کامل

Some orthogonal designs and complex Hadamard matrices by using two Hadamard matrices

We prove that if there Hadamard of order hand n divisible by 4 then there exist two disjoint ihn), whose sum is a (1,-1) matrix and a complex Hadamard matrix of order furthermore, there exists an 0 D(mj 81,82, ' .. ,8/) for even m then there exists an OD(lhnm;

متن کامل

5 Concluding Remarks 24

2 Requirements for Ground Simulation 5 2.1 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Blunt Body Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Instrumentation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1981

ISSN: 0097-3165

DOI: 10.1016/0097-3165(81)90054-6